Complex Numbers

Nerd Cafe | نرد کافه

1. What Is a Complex Number?

Definition (Mathematics)

A complex number is a number of the form:

z=a+biz=a+bi

Where:

  • a is the real part,

  • b is the imaginary part,

  • i is the imaginary unit where:

i2=1i^{2}=-1

Example:

z=3+4iz=3+4i
  • Real part: 3

  • Imaginary part: 4

Python Representation

Output:

2. Basic Operations

Addition

(3+4i)+(1+2i)=(3+1)+(4+2)i=4+6i(3+4i)+(1+2i)=(3+1)+(4+2)i=4+6i

Subtraction

(3+4i)(1+2i)=(31)+(42)i=2+2i(3+4i)−(1+2i)=(3−1)+(4−2)i=2+2i

Multiplication

(3+4i)(1+2i)=3+6i+4i+8i2=3+10i+8(1)=5+10i(3+4i)(1+2i)=3+6i+4i+8i^{2}=3+10i+8\left( -1 \right)=-5+10i

Division

3+4i1+2i=3+4i1+2i×12i12i=112i5\frac{3+4i}{1+2i}=\frac{3+4i}{1+2i}\times \frac{1-2i}{1-2i}=\frac{11-2i}{5}

Python Operations

Output:

3. Modulus of a Complex Number

Formula:

z=a2+b2\left| z \right|=\sqrt{a^{2}+b^{2}}

Example:

3+4i=32+42=5\left| 3+4i \right|=\sqrt{3^{2}+4^{2}}=5

Python:

Output:

4. Complex Conjugate

Definition:

The conjugate of

z=a+biz=a+bi

is

zˉ=abi\bar{z}=a-bi

Python:

Output:

5. Polar Form of a Complex Number

Formula:

Convert

z=a+biz=a+bi

into:

z=r(cosθ+isinθ)=rcisθz=r(cos\theta+isin\theta)=rcis\theta

Where:

r=z=a2+b2θ=arg(z)=tan1(ba)\begin{matrix} r=\left| z \right|=\sqrt{a^{2}+b^{2}} \\ \\ \theta=arg\left( z \right)=tan^{-1}\left( \frac{b}{a} \right) \end{matrix}

Python:

Output:

6. Euler's Formula

eiθ=cosθ+isinθe^{i\theta}=cosθ+isinθ

So:

z=reiθz=re^{i\theta}

7. Convert Between Cartesian and Polar Forms

Python:

Convert to Polar:

Output:

Convert to Rectangular:

Output:

8. Powers and Roots

Power:

zn=[reiθ]n=[r(cosθ+isinθ)]n=rncis(nθ)z^{n}=\left[ re^{i\theta} \right]^{n}=\left[ r\left( cos\theta+isin\theta \right) \right]^{n}=r^{n}cis\left( n\theta \right)

n-th Roots:

zn=rcis(θ)n=rncis(θ+2kπn);k=0,1,2,...,(n1)\sqrt[n]{z}=\sqrt[n]{rcis(\theta)}=\sqrt[n]{r}cis\left( \frac{\theta+2k\pi}{n} \right);k=0,1,2,...,\left( n-1 \right)

Python (Using cmath):

Output:

9. Plotting Complex Numbers (Optional Visualization)

Output:

Summary Cheat Sheet

Concept
Python Function

Complex number

complex(a, b)

Real part

z.real

Imaginary part

z.imag

Conjugate

z.conjugate()

Modulus

abs(z)

Phase/angle

cmath.phase(z)

Polar form

cmath.polar(z)

Rectangular form

cmath.rect(r, θ)

Square root

cmath.sqrt(z)

Plotting

matplotlib

Video Tutorial

Support Our Work

If you find this post helpful and would like to support my work, you can send a donation via TRC-20 (USDT). Your contributions help us keep creating and sharing more valuable content.

Thank you for your generosity! 🙏

Keywords

complex numbers, imaginary numbers, real part, imaginary part, complex arithmetic, addition, subtraction, multiplication, division, modulus, complex conjugate, polar form, rectangular form, Euler’s formula, Python complex type, cmath module, plotting complex numbers, argument of complex number, powers of complex numbers, roots of complex numbers, nerd cafe , نرد کافه

Channel Overview

🌐 Website: www.nerd-cafe.ir

📺 YouTube: @nerd-cafe

🎥 Aparat: nerd_cafe

📌 Pinterest: nerd_cafe

📱 Telegram: @nerd_cafe

📝 Blog: Nerd Café on Virgool

💻 GitHub: nerd-cafe

Last updated