Polar Coordinates
Nerd Cafe | نرد کافه
1. What Are Polar Coordinates?
Unlike Cartesian coordinates (x, y), polar coordinates represent a point using:
r = the distance from the origin (radius)
θ = the angle (in radians or degrees) from the positive x-axis
So a point P is written as:
2. Converting Between Cartesian and Polar Coordinates
A. Polar ➡️ Cartesian
B. Cartesian ➡️ Polar
Note: Adjust 𝜃 based on quadrant.
Python Example 1: Convert Polar to Cartesian
Output:
Python Example 2: Convert Cartesian to Polar
Output:
3. Graphing Polar Equations
Common Polar Graphs:
r=a
Circle
r=a⋅cos(θ)
Circle shifted
r=a⋅sin(nθ)
Rose curve
r=a+b⋅cos(θ)
Limaçon
r=a⋅ebθ
Spiral (logarithmic)
Python Example 3: Plot Polar Equation
Let’s plot:
Output:

Python Example 4: Plot Polar Equation
Let’s plot:
Output:

Python Example 5: Plot Polar Equation
Let’s plot:
Output:

4. Symmetry in Polar Graphs
Polar Axis (x-axis)
Replace 𝜃 with −𝜃
Line 𝜃=𝜋/2
Replace 𝜃 with 𝜋−𝜃
Origin
Replace 𝑟 with −𝑟
5. Area in Polar Coordinates
To find the area under a polar curve:
Python Example 6: Area of a Petal of r=sin(2𝜃)
Output:
6. Direction of Rotation
In polar plots:
Increasing θ: rotates counterclockwise
Negative θ: rotates clockwise
Negative r: reflects across origin
Video Tutorial
Support Our Work
If you find this post helpful and would like to support my work, you can send a donation via TRC-20 (USDT). Your contributions help us keep creating and sharing more valuable content.
TRC-20 Address: TAAVVf9ZxUpbyvTa6Gd5SGPmctBdy4PQwf
Thank you for your generosity! 🙏
Keywords
polar coordinates, polar graph, radius and angle, r and theta, cartesian to polar, polar to cartesian, polar equations, plotting polar graphs, area in polar coordinates, rose curve, limaçon, polar symmetry, polar transformation, python polar plot, matplotlib polar, numpy theta, symbolic integration, polar area formula, polar curve analysis, polar math tutorial, nerd cafe , نرد کافه
Channel Overview
🌐 Website: www.nerd-cafe.ir
📺 YouTube: @nerd-cafe
🎥 Aparat: nerd_cafe
📌 Pinterest: nerd_cafe
📱 Telegram: @nerd_cafe
📝 Blog: Nerd Café on Virgool
💻 GitHub: nerd-cafe
Last updated